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LINTRODUCTION

In the past twenty vears, the nonrelativistic constituent quark model (NRQM)
has experienced some measure of success. Much of this success has been in the
area of spectroscopy. The interplay between quark model spectroscopy and ex-
perimental observation has contributed much to our understanding of low energy
phenomenology. In models of the type that concern us here, the relevant degrees
of freedom are constituent quarks, and gluonic degrees of freedom are not excited.

Despite the success of these models, many problems, such as the significance
and treatment of the relativistic motion of quarks within a hadron, still persist.
Some of these problems are discussed in section II. It is possible to correct the
models by including some relativistic effects and other refinements, as has been
done in Ref. (1], and as briefly described in section II. However, none of these
refinements is likely to offer a solution to the important problem of the ‘missing’
baryon states, i. e., states that appear m the model but which have not been
seen in 7N partial wave analyses.

One approach that has been used in dealing with the missing states is that of
diminishing the number of effective degrees of freedom within the baryon. This is
done by replacing the three-quark system with a quark-diquark system (2], with
the result that the predicted spectrum contains fewer states. This approach raises
the question of whether there is any diquark clustering within a baryon, and if
s0, to what extent. Indeed, potential model [3] studies and lattice simulations (4]
show that there is little evidence for such clustering in baryons consisting of light
quarks (unless they have large orbital angular momentum).

If the three-quark description of the baryon is retained, a possible solution to
the question of missing baryon resonances is offered by considering the couplings
of predicted states to formation channels. Koniuk and Isgur [5] find that the
pattern of experimentally observed states matches that of states predicted to
couple strongly to formation channels. These results indicate that consideration
of spectroscopy alone is not enough in evaluating the utility of a model. Indeed,
it is expected that in addition to the usual mixings (such as hyperfine, spin-orbit,
etc.) observed in spectroscopic calculations, there should be mixings and mass
shifts associated with couplings to decay channels {6].

"This suggests that a model caleulation of hadron spectra and strong couplings
should be an iterative process. A successful mode] should provide at least a rea-
sonable description of both the masses and couplings of the hadrons it claims to
describe. Ideally, a calculation of a spectrum would automatically include some
description of couplings. as these do affect the masses (and vice versa). Clearly,
attempts to describe both sets of phenomena simultaneously are necessarily in-
volved. The approach adopted here is to treat the problem as a step-by-step

process. As an initial step, the wave functions from an existing model of the
baryon spectrum are used to predict strong couplings. In this way, we hope to
get an indication of the strengths and shortcomings of the model, which may
provide us with insight for possible improvements.

This article is organized as follows. The rest of this section is devoted to
general comments on models of strong hadron couplings, together with a brief
synopsis of constituent quark models, with emphasis on the work of Isgur and
Karl. In section II we discuss the relativized model of baryon resonances used
here. Section III describes the decay model, while our results are presented
in section 1V. Section V contains our conclusions and an outlook, and some
calculational details are relegated to an appendix.

A. Hadron Transition Models

While the study of hadron spectra is a well-developed field with many com-
peting models, especially for the baryon spectrum, there are far fewer models for
strong hadronic transitions. The OZI-allowed [7] strong decays of hadrons which
we consider here have been examined in three classes of models described below.

M.

Figure 1: The process B — B'M, as an elementary meson emission from a
point-like barvon.

The ‘hadrodynamic’ models, illustrated in Figure 1, in which all hadrons
are treated as elementary point-like objects, do not lend themselves easily to
decay calculations of the kind we are carrying out here. This is understandable,
since each transition is described in terms of an independent phenomenological
coupling constant, gpprar. While the use of SU(2) or SU(3) flavor symmetry
arguments would give relationships among some of these coupling constants. the
overall situation would nevertheless be largely unworkable.

A second class of models treats the baryons as objects with structure, but the



decay takes place through elementary meson emission. Such an approach may
be taken in bag models. Some potential model calculations have used a similar
approach, as, for instance, the work of Koniuk and Isgur [3]. In these models,
the mesons are emitted from quark lines (Figure 2}, and one replaces the set of
gep'M coupling constants with a smaller set of ggerar’s. In addition, one may
use SU(2) or SU(3) flavor symmetry to relate the coupling constants for mesons
within a single multiplet, as well as those for different quarks.

Figure 2: The process B — B’M, as an elementary meson emission from a
quark.

A third class of models may be referred to breadly as pair creation models. In
such models both the baryons and mesons have some structure, and the decay of
the baryon, say, is facilitated by the creation of a quark-antiquark pair somewhere
in the hadronic medium. The created antiquark combines with one of the quarks
from the decaying baryen to form the daughter meson, while the quark of the
created pair becomes part of the daughter baryon. This is illustrated in Figure
3.

There are several types of pair creation model. In the ® Py model popularized
by LeYaouanc ef al. [8], the quark-antiquark pair is created anywhere in space
with the quantum numbers of the QCD vacuum, namely 01+, This corresponds
to 3 Py, hence the name of the model. While the pair, in principle, may be created
very far away from the decaying hadron, the wave function overlaps required
naturally suppress such contributions to the decay amplitude. This model has
been quite popular in descriptions of hadron decays, and has been applied to
baryon decays [8], meson decays {8, 9], and even the decays of fictitious four-
quark states [10].

Other pair-creation models include the string-breaking models of Dosch and
Gromes [11], and of Alcock, Burfitt and Cottingham [12]. In these models, the

lines of color flux between quarks have collapsed into a string, and the pair is
created when the string breaks. This is illustrated in Figure 4. In the Dosch-
Gromes version of this model, the created pair have the quantum numbers 3 P;,
while in the Alcock et al. version, the quantum numbers of the created pair is

35).

Figure 3: The OZI allowed process B — B'M, in a quark pair creation

scenario.

~

Figure 4: The process B -+ B'M in the string breaking picture.

Several authors have used similar ideas in describing decays of hadrons in
flux-tube breaking models [13-16]. Here, the pair still has quantum numbers
3P, but is constrained to be created somewhere within the flux tube connecting
quarks. The ‘siring’ breaking picture arises in the zero-width limit of the flux
tube,

B. Nonrelativistic Quark Model Spectroscopy

The nonrelativistic quark model as applied to the baryon spectrum and decays
owes its origins to many authors. We intend to focus on the model of Isgur and



Karl [17, 18] which evolved from the pioneering work of others, and refer the
reader to the literature for a discussion of the origins of the model [19].

The choice of dynamical degrees of freedom used to represent a baryon de-
pends on momentum transfer; at low 7 they can be taken to be constituent
quarks, which are dressed quarks with effective masses of 200 to 300 MeV for
u and d. In this model the gluon fields affect the quark dynamics only by pro-
viding [20] a confining potential in which the quarks move; the effects of the
quark motion on the gluon dynamics are neglected. At short distances one-gluon
exchange provides the spin-dependent potential. This model will obviously only
be applicable to ‘soft” (low-§* or coarse-grid) aspects of hadron structure, and
is best applied to low-mass baryons where gluonic excitation is unlikely. It also
ignores mass shifts [21, 6] and mixings from couplings to decay channels. One of
the purposes of this paper is test the model’s imit of applicability by extending
the calculation of spectra and strong decays to highly-excited states where these
approximations are expected to break down.

In the Isgur-Karl (IK) model [17, 18] the Schrédinger equation H¥ = EV¥ for
the nonrelativistic three valence-quark system is solved for baryon energies and
wavefunctions. The Hamiltonian is

H:Z(ml+21:;2l,

)+Z(V"f+v;j;,'p), (1)
where the spin-independent potential V¥ has the form V¥ = Cype /3 + bryj /2 —
20, /3r;5, with ri; = |r; — r;|. In practice, V¥ is written in terms of a harmonic-
oscillator potential K rfj /2 plus an anharmonicity Uy;, which is treated as a per-

turbation. The hyperfine interaction ngp is the sum
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of contact and tensor terms arising from the color magnetic dipole-magnetic
dipole interaction. Spin-orbit forces are neglected, as their inclusion spoils [17]
the agreement with the spectrum (the resulting splittings tend to be too large).
The relative strengths of the Coulomb, contact and tensor terms are as deter-
mined from the Breit-Fermi limit of the one-gluon exchange potential.
Non-strange baryon states are then written as the product of a totally an-
tisymmetric (under the exchange group S3) color wavefunction C4, and a sum
>_#x9. The spatial (¥} and flavor (¢) wavefunctions are chosen to represent
53, and the usual quark-spin wavefunctions {yg, with § = %, % from % ® % ® %)

automatically do so. The sum is arranged to be totally exchange-symmetric,
and also implicitly includes Clebsch-Gordan coefficients for coupling the quark
orbital angular momentum L = I, + I, with the total quark spin 8. The spa-
tial wavefunctions ¢ are, in zeroth order in the perturbations U and Hyyp, the
harmonic-oscillator eigenfunctions ¥wnpas(p, A), where p = (r; — I‘g)/\/% and
A = (r; + ry — 2r3)/V/6. Positive-parity ground states [such as N(938) and
A(1232)] are described by wavefunctions with N = 2(n, + ma} + 1, + L = 0.
The low-lying negative-parity excited resonances (‘P waves’) have N = 1 spatial
wavefunctions with either I, = 1 or [ = 1; the positive parity excited resonances
have N = 2 wavefunctions with radial excitations in one of the two oscillators,
or ‘orbital excitations’ with I, +{y =2 and L =0,1 or 2.

The Schrédinger equation is then solved for the energies and compositions of
the resonances by first-order perturbation theory in U and Hyyp. The anhar-
monicity is treated as a diagonal perturbation on the energies of the states, and
so is not allowed to mix the N = 0 and N = 2 band states. It cannot cause
splittings within the ¥ = 0 and N = 1 bands of non-strange states, and in first
order it splits up the N = 2 band states in a pattern which is independent of the
exact form of the potential /. The hyperfine interaction is treated to first order
in both the energies and wavefunctions. To a large degree it is the contact inter-
action (responsible, e.g., for the A— N and ¥ — A splittings) and the anharmonic
splitting in the N = 2 band which determine the coarse features of the spectrum.

The main features of the spectrum of the low-lying baryon resonances [17-19]
are then quite convincingly described by this model. Just as importantly, the
mixing of the states caused by the hyperfine interaction is crucial in explain-
ing their observed strong and electromagnetic [5] decays. There are more states
predicted by the model in the N = 2 band than exist in the partial wave analy-
ses; the Koniuk-Isgur [5] strong decay analysis established that the states whose
hyperfine-mixed wavefunctions allow them to couple to the # N production chan-
nel largely correspond, in both energy and number, with the observed states.

II. RELATIVIZED-MODEL WAVEFUNCTIONS AND SPECTROSCOPY

Although successful, the above approach to baryon spectroscopy can be crit-
icized on a number of grounds. In strongly bound systems such as the baryons,
where p/m ~ 1, the approximation of nonrelativistic kinematics and dynamics
is not justified. For example, if one forms the one-gluon exchange T-matrix ele-
ment without performing a nonrelativistic reduction, factors of m; in Eq. (2) are
replaced, roughly, with factors of E; = \/p? + m?. In a potential model picture
there should also be ‘kinematic’ smearing of the interquark coordinate r;; with a

=1



characteristic size given by the Compton wavelength of the quark 1/m,.

Neglect of the scale dependence of a cut-off field theory has resulted in non-
fundamental values of parameters like the quark mass, the string tension {implicit
in the size of the anharmonic perturbations) and the strong coupling o, ~ 2. A
consistent theory with constituent quarks should give them a commensurate size,
which would also smear out the interactions between the quarks. The model
should use a string tension consistent with meson spectroscopy, and the relation
between the anharmonicity and the meson string tension is unexplored. If there
are genuine three-body forces in baryons they are neglected. The neglect of
spin-orbit interactions in the Hamiltonian is also inconsistent, independent of
our choice of ansafz for the short-distance and confining physics. There is some
evidence in the observed spectrum for spin-orbit splittings, e.g. that between the
states A"3 (1620) and A*2™ (1700).

The model also carries out a first-order perturbative evaluation of large per-
turbations. The contact term is formally infinite unless the above smearing is
implemented. The size of the first-order anharmonic splitting of the N = 2
band must be larger than the zeroth order harmonic splitting, to get the light-
est N = 2 band nucleon [identified with the Roper resonance N(1440)] below
the P-wave non-strange states. This calls into question the usefulness of first
order perturbation theory. It also means that the wavefunctions of states like the
Roper resonance should have a large anharmonic mizing with the ground states.
Some of these flaws of the nonrelativistic model are inessential, and can be cor-
rected. The relativized model [22, 1], briefly described below, puts the ideas of
many authors together in an attempt to correct as many of these deficiencies as
possible.

A. Details of the relativized model

The Schrodinger equation is once again solved in a Fock space made up of
valence quarks, with a Hamiltonian now given by

H:Z1/p?+m.-2+V, (3)

where V is a relative-position and -momentum dependent potential which tends,
in the nonrelativistic limit (nof taken here) to

V- ‘/;;t.ring + VCoul + Vhyp + V;o(cm'] + V;‘IO(Tp)' (4)
Here 15, = the potential wenerared by adding the lengths of the gange-invariant
(Yoshape e 0 o oron o el nanlnplving by the meson string tension (/o

The string is assumed to adjust instantaneously to the motion of the quarks so
that it is always in its minimum length configuration; this generates an adi-
abatic potential for the quarks [23] which includes genuine three-body forces.
Here Voouls Viypr Veofemys and Vig(rp) are color-Coulomb, color-hyperfine, color-
magnetic spin-orbit, and Thomas-precession spin-orbit potentials, respectively.
The color-Coulomb and hyperfine potentials are as in the Isgur-Karl model, ex-
cept that the inter-quark coordinate r;; is smeared out over mass-dependent
distances, and the momentum dependence away from the p/m — 0 limit 1s
parametrized.
In practice this smearing is brought about by convoluting the poientials with
a function
3
pij(rij) = i'ée“’?f"-’i- (5)
i)

The ¢;; are chosen to smear the inter-quark coordinate over distances of O(1/Mg)
for Q heavy, and approximately 0.1 fm for light quarks. The potentials are made
momentum dependent by introducing factors which replace m; by, roughly, Ej.

For example the contact part of VW, becomes } . V.. with

1 i N
Vi o () 2SSy [ | (mamg )T
cont E,'Ej 9 e m;my ',1-% E,'Ej
(6)

Here €cone 15 a constant parameter, and a,(r;;) is a running-coupling constant
which runs according to the lowest-order QCD formula, saturating to 0.6 at
Q?*=0.

The color-magnetic and Thomas-precession spin-orbit potentials are smeared
and allowed to depend on momentum in a similar way; in the non-relativistic
limit, they also tend to the spin-orbit potentials which are calculated (but not
included) in the Isgur-Karl model.

Non-strange baryon states are then written as

¥=Cady ¥x, ]

where ¢ is one of uuu (A*+), uud (p or At), ddu (n or A%), or ddd (A~), and
the sum is performed so that the result is only symmetric under exchange of
guarks 1 and 2. The spaiial wavefunctions ¢ are made up of solutions of the two
three-dimensional oscillators

d’Lbfan,ﬂﬂx = Z C([p: IA) m, M_ms LJ M)lnp I;‘ m)ln)\ I)\ M-m)l (8)
m




where

3 —a?p? 1“,-‘1-l I .
[nplym) = N, a(ap)ee™ © 200 T 2 (a®p?)Yi, m(9,), (9)

and similarly for |ny Iy M—m), and where N,;; = \/Qn!/F(n +1+ %)

The wavefunctions of baryon states with given total spin J and parity P
can be expanded in a basis of (implicitly £-S coupled) states y; the energies
and wavefunctions of the baryon states are then formed by diagonalising the
Hamiltonian H in this basis. Note that the basis mixes N (I = 1) and A (I = %)
states; the m,, = my symmetry of H ensures that the eigenvectors are either A’s,
with linear combinations 3 ¢'x totally symmetric under Sz, or N'’s, with mixed- A
symmetry. The basis extends to at least N = 6 for positive-parity states [24] and
N = 7 for negative-parity states, giving of the order of 100 substates for each J¥.
Energies are minimized, state by state, by coarse variation of the oscillator size
parameter a; however in a calculation of transition amplitudes it is necessary
to have all states expanded with the same o« for orthogonality. A measure of
the convergence of the expansion is the a-dependence of the energies, which is
relatively weak, and of these amplitudes, which will be discussed later.

The resulting spectroscopy is comparable to that of the Isgur-Kazrl model,
with some improvements and some deterioration. This is a non-trivial test, as
the model is much more tightly constrained; various quantities which were fit in
the Isgur-Karl model (such as band centers of mass) are now predicted, and the
same set of parameters [25] fits ell mesons and baryons. Spin-orbit interactions
are small but not neglected in this model; this is mainly due to the use of a
smaller a,, although there is, as expected, a partial cancellation of the color-
magnetic and Thomas-precession spin-orbit terms, and the spin-orbit interactions
are suppressed relative to the hyperfine contact term by the choice of €cont < €50-
This smaller «, yields the same contact splittings when the smeared contact
interaction of Eq. (6) is evaluated without resorting to wavefunction perturbation
theory (apart from basis truncation beyond N = 6).

The wavefunctions which result from this process differ substantially from
those of the Isgur-Karl model, due to the more realistic treatment of the spin-
independent potential and inclusion of the configuration mixings that it causes.
Since a non-singular contact interaction with a smaller a, is used, and all of
the spin-dependent interactions are evaluated more precisely, we can also expect
differences in the wavefunction mixings due to the hyperfine interaction.

A convenient notation which we will use throughout this work is to label a
quark model state with the oscillator band at which, by counting arguments,
such a state first appears in the pure-oscillator spectrum. However if we refer to
an N=3 band state, say, we are not implying that the state has its wavefunction
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confined to the N=3 band of the oscillator; all oscillator states of a given flavor,
spin, and parity mix with all others (up to some maximum N) in the model of
Ref. [1]. It is likely that such a state has a large part of its wavefunction made up
of N=J band states, but this labelling should be thought of as merely a convenient
way to visualize the counting of quark model states.

Problems which remain unsolved in the spectroscopy of the N < 2 non-strange
baryons are the overestimate of the masses of the Roper resonance N %+(144U)P1 1

and the Psg state A%+(1600). Although the Roper resonance is naturally signif-
icantly lighter than the other states in its band, its mass is still overestimated
by 60 MeV even if the N=2 band centre of energy (predicted to be 40 MeV too
heavy} is adjusted downwards. Richard [26] has shown that, in a broad class of
models, it is impossible for the mass of this state to become less than that of
the P-wave states. The situation for the two-star A%+(1600) 15 worse, with the
adjusted mass about 150 MeV too high. There are also discrepancies between
the model predictions of the photocouplings of these states [27] and those ex-
tracted from the data. Models exist which describe one or both of these states as
hybrids {28] (or with significant mixings with hybrid states). It is therefore of in-
terest to examine their N n couplings in a model with the above relativized-model
wavefunctions.

B. Bevond the N=2 band

One of the advantages of the relativized model of Ref. [1] is that it can be
extended to states which, by counting arguments, must correspond to states
which first appear [29, 30] when the basis is extended beyond the N=2 band. The
spectroscopy of some of these states was examined in Ref. [1], but comparison
with the data was limited because an ab intt10 strong decay calculation was not
performed. This meant that it was only possible to lisi the quark model states,
but was not possible to make assignments of these states to those seen in the
N (for nucleon and A states) or AK production channels. This deficiency is
corrected here for the Nr states by calculating their production amplitudes in
the 3P; model deseribed below.

There are several well-established states which correspond to quark meodel
states which first appear in the N=3 band. The lightest of these are [31] the

three-star A states A1™(1900)Sa; (the notation is flavor/J¥ /mass(MeV)/N

partial wave}, and A%_(IQBO)D%. Quark-model predictions for the masses of
these states are consistently high [29, 30, 1, 32] by about 150 to 250 MeV. There

are two four-star nucleon states which have no N=1 analogues, N1 (2190)Gy7
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and N%_(2250)G19 whose masses seem to be quite well described in the spectro-
scopic models [29,1]. There are also two two-star candidate nucleon resonances,

N%—(QOSO)DH and N%_(QQOO)DM which are N=3 band recurrences of the fa-
miliar light negative-parity nucleon resonances, and a two-star candidate A state
A5 (2400)G 9.

"If the lightest model state in each flavor and JP sector is assigned to these
experimental states, a roughly consistent picture of their spectroscopy emerges.
In some cases, as for the two J¥ = %_ states, this exhausts the model states in
this band, makingsuch an assignment natural. In other cases there are many light
model states which could correspond to the observed states and it is necessary (if
we are to determine which states are conventional three-quark states and which
are not) to determine which states couple to Nx.

This necessity becomes even stronger for the states which first occur in the
N=4 band (and above); there are three nucleon states (with a two-star rating or

better) with J¥ = %+, L™ and %+ which cannot be N<3 band states since

2
they must have L > 4. Similarly there are four such A states with J¥ = %+, %-}',
137 and &%, In Ref. [1] the spectroscopy was limited to states with J < il;

here the masses and wavefunctions of states with 13 < J < 18 are estimated in

this model, and assignments of quark-model states to these experimental states
and candidates are made. At this level of excitation it is likely that gluon dy-
namics, and decay channel mixings and mass-shifts play an essential role in the
spectroscopy of these states. This study, which neglects these effects, may al-
low us to pinpoint states which are not easily explained with simple three-quark
model assignments.

II1. DECAY MODEL

A. The Model

Our starting point in modeling the N7 transitions of the baryons is the ansatz
that the operator T responsible for the transition is

T=-37) / dpidp;8(p; + p;)Cyj Fize > (P=P3) 12
i!j
x 3 <1,m;L,—m|0,0 > xDVT ™ (pi — ;)b (pi)d(p;)- (10)

Here, CC;; and Fy; are the color and flavor wave functions of the created pair,
both assumed to be singlet, x;; is the spin triplet wave function of the pair, and
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Y1(pi — p;) 1s the vector harmonic indicating that the pair is in a relative p-wave.

A:is, =1, +1/2;
‘-lcs:Scl'i'I‘Ac

C:85.=1/24+1/2;
Jc=Sc+Lc

/A

[y

B:sy =173, +1/2;
Jy =55 + Ly,

BC :Jpe =T + 1
Ja:‘]bc+£

Figure 5: Schematic diagram of the decay B — B'M in the 3P; model.
The angular momentum notation is shown. The decay proceeds through
B(123) — (12443) — B'(124)M(43).

For the transition A — B(', we are interested in evaluating the transition
amplitude M, given by

M =< BC|T|A > . (11)

The wave functions of the states involved must be written in comparable second-
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quantized form in order to evaluate M. Al of the detajls of this caleulation are
given elsewhere [33]. Our full transition amplitude is given in Appendix A. In
arriving at this form, we use the notation illustrated in Figure 4, and we denote
Ly, = £a, with a similar definition for baryon B. We have also assumed that the
decaying baryon is at rest, and that the final baryon has three-momentum k.
There are two phenomenological parameters in our decay model. These are
7. the usnal 3P, coupling strength, and X, which is a pew parameter that we have
introduced. In the usual version of this model, X is zero. We have introduced

be independent of this choice, which amounts to a choice of basis. We will
demonstrate this Insensitivity below.

B. Phase Space
To obtain a decay width from the amplitude we have evaluated, we use
F(A= BC) = 37 IMa—nc (s, £, ko) B(ABC), (12)
Toe £
where & is the phase space for the decay. Here, a number of options are available

to us. The usual prescription is to use

B(ABC) = Qw%)rf_c(m, (13)

with Ey(ky) = VEZH+mE, E(ky) = Vk3+m2. This is a ‘semi-relativistic’
prescription, since it is usually used with a matrix element calculated non-
relativistically, while E; and E. have been calculated relativistically,. A fully
nonrelativistic prescription consists in using

D(ABC) = gz M8Meko. (14)

Mgy

In their calculation of meson decay widths, Kokoski and Isgur [14] use the pre-
scription

o
P(ABC) = o7 TMek0. (15)

Mg
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where the m’s are effective IESOI N vt wirl e o fonedent
interaction. They argue that this 1s valid i the weak-Lindime it where p and
T are degenerate, and m; = b.1lm,,

In our calculation of the baryon decay widths, there are some features that
are similar to the Kokoski-Isgur calculation of the meson decay widths: (i) the
baryon wave functions we are using [1] were obtained in the same spirit as the
Godfrey-Isgur [22] wave functions used in the Kokoski-Isgur calculation, and in
fact, many of the Parameters of both spectroseopic calculations were chosen to
be the same or similar: (i1) we are using the Godfrey-Isgur wave function for the
pion. We would therefore argue that it makes sense for us to use Eq. (15) in our
calculation of the decay widths. For the decays R — N, we take iy = 1.1
GeV, m,=0.72 GeV, consistent with Kokoski and Isgur, and g = mp.

IV. RESULTS AND DISCUSSION

Our approach is to fit the two parameters of our decay model to the Nr decay
amplitudes of the non-strange resonances with Particle Data Group [31] (PDG)
ratings of two stars or better. We include only the low-lying states in the fit,
r.e. those with quark-model analogues in the N=0, 1, or 2 bands, where both
experiment and the model are the most trustworthy. The reader is reminded that
in the relativized model the labelling of states by oscillator bands is a matter of
notation, and does not imply that their wavefunctions are restricted to those
bands. In order to test for sensitivity to the harmonic-oscillator size parameter
we have performed fits for o — 0.5 and 0.6 GeV. The fit is strongly sensitive
to ¥ since all amplitudes are simply proportional to this parameter. The rate
of change of x? with respect to our 3Py smearing-parameter 3 is rapid as A is
changed away from zero {no smearing), but near its minimum value y? is a more
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Accordingly, for each J < 9/2, we have calculated the N amplitudes for all
negative-parity N=3 band model states, up to a given cut-off mass. This mass is
chosen to exceed the mass of the heaviest resonance of this J¥ reported by the
PDG. In some cases there are a small number of states of a given J in the N=3
band, and so we simply calculate all of their N« amplitudes.

A similar procedure is used to limit the calculation of amplitudes to a workable
number of model states in the case of the N > 4 band states. For all resonances
reported by the PDG we have, as we shall argue below, assigned reasonable
model analogues based on both the masses and the predicted N7 amplitudes of
the model states.

Although the signs of these Nx amplitudes are not experimentally accessible
in pion production exeriments, the combined signs of the N vertices and those
of the N+ vertices in single-pion photoproduction are. These photoproduction
amplitude signs are examined in the relativized model in Refs. [34, 35}, using the
signs of the Nx amplitudes calculated here. In most cases the calculated signs
from our ® Py model agree with the signs fit to those of the single-pion photopro-
duction amplitudes (by their choice of the signs of reduced N amplitudes) by
Koniuk and Isgur [14]. There are some differences, however, and the N« signs of
some states are sensitive to mixings; for details see Refs. [34, 35].

A. gNN=

Since we are attempting to describe the couplings of baryons to mesons in our
model, we should be able to reproduce a reasonable value for gy pny. In defining
this quantity, however, we have to be careful since the usual definition arises from
a completely relativistic treatment of the nucleon and pion, while the deseription
we have may best be described as ‘relativized’. This is crucial when we consider
how the states should be normalized.

In essence, our calculation resembles that of Miller [36]. Qur anmsaiz is to
evaluate the amplitude for scattering of an on-shell pion and an on-shell nucleon
into an off-shell nucleon, both in our model and using the usual hadrodynamic
prescription. In order to account for differences in normalizations in the two
calculations, we evaluate a ‘decay rate’ for this process, since the choice of phase-
space is dictated by the normalization of our states. Equating the two decay
rates, and defining the amplitude calculated in our model as

Annx = Ao(kojko, (16)

where kg 1s the three-momentum of one of the nucleons in the rest frame of the
other nucleon, we obtain
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INNr = %ﬂ's"?v My gy Ao(0). (17)

Here M = my + my, and mpy and m; have the values noted in section III

With this ansatz, we obtain a value of 17.2 for gn N, in reasonable agreement
with the accepted value of 13.4, and consistent with the deviation that we expect
in our model.

B. N<2 states and our fit

With relativized-model wavefunctions expanded in bases with a=0.5 GeV,
and with ¥+ = 6.5 and X = 2.1 GeV~!, we obtain the fit to the two, three, and
four-star non-strange resonances up to the N=2 band illustrated in Tables I and
1I, and Figures 6 and 7. The data for the amplitudes are obtained from the
total widths and N« branching fractions quoted by the PDG with the exception
of those of two P;; resonances, the Roper resonance and N%+(1710)P11. In a
recent re-analysis of two different sets of Py; partial-wave data, Cutkosky and
Wang [37] have reported total widths for the Roper resonance of roughly 550 to
650 MeV, with at least a 30% uncertainty in their estimmate. This is considerably
larger than the 200 MeV ‘best guess’ quoted by the PDG [31]. We have adopted
their N« partial widths for these two states, taking an average of their two fits. In
addition, the partial-wave analysis of Nxr carried out by Manley and Saleski [38]
supports this picture of a broad Roper resonance.

The resulting x? is roughly 97 for 18 degrees of freedom. Note, however, that
a large part of y? arises from our overestimate of the amplitude of N%+(1720)P13.
With this state excluded, the same parameters give a considerably smaller x? of
45 for 17 degrees of freedom. Following Forsyth and Cutkosky [29], a simple
measure of the ‘theoretical error’ of our model is the value of  which gives a x?
per degree of freedom of 1.0 when added in quadrature with the experimental
errors for each state . For our problem, 7 is defined by

N

(=3 ((’j}_?‘TET,)) =N-2, (18)

i=1
where {4;} are the theoretical predictions, and {E; + o;} are the measured am-
plitudes. If N%+(1720)P13 is left out of the fit the theoretical error o 1.7 MeV%;
with this state included the error increases to 3.3 MeV73.
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Figure 6: Absolute values of the N« amplitudes for all N* resonances in
the N=1 and N=2 bands. For each model state the nominal model mass
is listed along with its total spin, parity, and principal quantum number
on the right axis. States from the partial-wave [31] analyses are shown
on the left axis (along with their overall rating from Ref. [31]} aligned
with our model assignment, and the extracted-experimental and theoretical
amplitudes are plotted along a line parallel with the bottom axis for each
such state. ‘Missing’ states are those with no experimental analogues.

In our fit, and the predictions that follow, we have used the wavefunctions
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expanded in bases with a harmonic-oscillator size parameter «=0.5 GeV. A mea-
sure of the convergence of the expansion of the wavefunciions is the sensitivity
of the predictions to «. When the amplitudes are calculated with a=0.6 GeV
(and ¥ and A are re-fitted), the theoretical error remains at 1.7 MeV? when
N%+(1720)P13 is omitted from the fit. When this state is included in the fit, the
theoretical error is 3.5 MeVZ. Most of the increase in the theoretical error in
going from o = 0.5 GeV to a = 0.6 GeV, or the corresponding increase in x2, is
therefore due to the increase in the already large discrepancy for this state.
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Figure 7. Absolute values of the N« amplitudes for ali A resonances in the
N=0, 1, and 2 bands. Legend as in Figure 6.

In all of the tables of results that we show, we have included an uncertainty
with each of the amplitudes. This is completely distinct from the theoretical error
we have estimated above, and arises from taking into account the uncertainties
in the masses of the decaying states. For two-, three- and four-star states, the
uncertainty in mass is that quoted by the PDG [31]. For one star states and
missing states, we use an uncertainty in mass of 150 MeV. It is gratifying to note
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that with the exception of a very few cases, the amplitudes that we present are
largely independent of the masses we use, at least within the range of masses we
have mentioned above.

From the pattern of the sizes of these amplitudes a simple picture of the
contrast between states which are seen in the N7 partial-wave analyses and
those which are not (the ‘missing’ states) emerges. The pattern we observe is
similar to that reported by Koniuk and Isgur {5]. In all cases the states which are
missing have smaller amplitudes than the (usually lighter) states with the same

isospin and J¥ which are seen. In the case of the two-star state N%+(2000)F15
we have made a rather arbitrary assignment to the lighter quark ‘model state
which has a slightly larger N« amplitude. States such as these which are close
in mass and which have similar couplings to the Nx production channel in our
simple model are likely to mix in the presence of many open decay channels. Such
mixings couid easily make one state more likely and one less likely to be produced
{and hence missing), which would correspond to the results of the partial-wave
analyses. A similar mechanism may be in effect in the case of the first and second
P53, model states, for which there is one experimental analogue A%+(1910)P31
with underestimated couplings, and for the third and fourth Ps3 model states
and the resonance A3¥(1920) Py3 (see Figure 8).

For the majority of the resonances in Figs. 6 and 7 the model gives a reason-
ably good quantitative fit to the production amplitudes. For example the relative
sizes of the N« amplitudes of the A%+(1232)P33 and its predominantly radially-

excited partner A%+(1600)P33 are quite well explained. As pointed out above, a

large part of xZ arises from our overestimate of the amplitude of N %+(1720)P13.
In order to establish the source of the large amplitude for this state, along with
that of the Roper resonance N %+(1440)P11, we have examined their Nx am-
plitudes in the *P; model with pure-oscillator and hyperfine-mixed Isgur-Karl
model wavefunctions [39, 34). The Roper resonance amplitude goes from 10 to 16
MeV# when the initial and final states are mixed (the overall strength ¥ is fixed
by normalizing to the A(1232) amplitude) in the manner outlined in Ref. {34].
This result is insensitive to the choice of smearing parameter A. This amplitude
increases further to 22 MeV % when the relativized model wavefunctions expanded
with a=0.5 GeV are used.

The N7 amplitude for N%+(1720)P13 is quite sensitive to mixing, going from
14 to 11 MeV3 when the Isgur-Karl model wavefunctions are hyperfine mixed,
and to 17 MeV3 when caleulated with the relativized-model wavefunctions. In
all cases the 3Py model overestimates this amplitude by a factor of at least two.
This overestimate seems to persist for the other Pi3 N™ model states, two of
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which are predicted to have widths similar to that of the observed width of the
N%+(1720)P13, meaning that they should have been seen in the analyses. Similar

results for both the Roper resonance and N %+(1720)P13 are found by Stancu and
Stassart [16] in the version of their model which most closely resembles ours.

C. N=3 band states

The results of applying this model with the fitted parameters to the Nx
amplitudes of the N=3 band negative-parity baryons are shown in Figures 8
and 9 and Tables III and 1V. A striking pattern in the sizes of the amplitudes
emerges in the predictions for the N=3 band N* states; the lightest model state of
a given J always couples the most strongly to N, and there is rapid fall-off of the
amplitudes as the model masses of the states increase. If, as in Fig. 8, we assign
these lightest model states to the experimental states, we obtain good agreement
between the Nx widths extracted from the data and the model. In all but one
case there is a clean separation, in both mass and the size of the N7 amplitude,
of the lightest state and the next heaviest. In the case of the two lightest N3~
model states at 2080 and 2095 MeV it seems unlikely that these states will be
resclved in the partial wave analyses given their proximity in mass and similar
couplings. There is the possibility that decay-channel mixings of these nearby
states causes one state to couple significantly more strongly than its neighbour.
These assignments demonstrate that the relativized model predictions for the
masses of these states are too low by roughly 100 MeV.

The situation for the A states at this level of excitation is more complicated,
and the data are less certain. For the states given two- or three- star ratings by the
PDG our model predictions for the Nx amplitudes are reasonably accurate, and
again the lightest state of each J is the one which couples. In the case of the A3~

and A%F states the two lightest N=3 band states have similar (underestimated)
couplings in our model but once again only one state is resclved in the partial
wave analyses. The consequences for spectroscopy of the model-state assignments
illustrated in Fig. 9 are interesting; for the lightest two well-established states
A17(1900)Ss; and A2 (1930)D35 the model masses are too kigh by 135 and
225 MeV [40] respectively, in contrast to the 100 MeV underestimate of the N=3
band N* masses. The overestimate of the mass of A§ (1930)Das in either the
nonrelativistic or relativized models has led to suggestions that it might be a
hybrid baryon (a state with excited glue) [41]. Although in nonrelativistic models
the [56,17] SU(6) supermultiplet to which this state belongs is lighter than the
other N=3 band supermultiplets [42], suggesting a conventional interpretation of



this state, it is not a particularly light state when a more realistic potential and
a more sophisticated treatment of the wavefunctions are used [30, 1], and this expt. © 5 10 theory
-

roblem persists [32]. L
p p [32] L0 E dala | 1A )150,1,(3085)
model
*A1572+(2950) | B—n— [A1572+]1,(2920)
**A13/2-(2750) |- — 4 1a130-1,2750)
3] H1a13n241,2955)
expt. @ —— f — 110 theory L O J ta13n41,0880)
*222NO/2(2250) O —s—— X data | ygpy] (3215) v o A11/24(2420) - ) ., 4 N24 [A11/2+],(2450)
0O model
L O [N7/2-15(2355) O | [A92+1,(2505)
o | N7R2-14(2305) = A0724(2300) |- 0 1 189724102420
- O | N72-12255) A0 O —_— o [A7724]1,(2460)
- O -] IN722-1,(2205) O - [A772+1,2370}
seraNT12-(2190) | 3 o IN722-1,(2000) ~
- N5/2-14(2305
i IN572-14(230%) *A0/2.(2400) | T J 1A972-),(2295)
8 B2 12295) O [A7/2-1,(2295)
L D 4 vsnag2160) 1 o
0 zm ;ﬂ{zzas) £A7/2-(2200) L O+——s——— N=3 4 1a729,02230
™ 1 15
- a 4 N52-142180) -0 - [A572-142325)
- (m] 3 [N52-152095) *AS52-(2350) |- u, »* + J [AS]42265)
*eN5/2-(2200) |- — ] 4 IN5/72-1,02080) -0 714372152163
| o 1 nana,cis0 *++ A5/2-(1930) |- B—  [A512-1,2155)
- (w} - IN32-142165) - O - [A32-)5(2145)
B - IN3/2-15(2095) *ANV-(IM0) | O ———— - [A3£2-1,(2080)
- a | N3/2-1,(2055) *A12-(2150) |- —g— - [8172-]5(2140)
**N3/2-(2080) }- r " = - [N3/2-1,(1960) A TAN2-(1900) 8—— - (A1/2-]5(2035)
i3] - N17Z-}2195) PR U T NN SR T SR TR TN N R Y
N 4 12142145 0 5 -112 10
- O - 12-152070) Ayl (MeV)
= O - N 1/2-1,(2030) Figure 9: Absolute values of the N# amplitudes for the lightest few
gure i \ p g
N1/2-(2000) |- e s 21945 negative-parity A resonances of each J in the N=3 band, and for the light-
IR T RO TN U TURY TN TUMAY S T S est few A resonances for JP values which first appear in the N=4, 5 and 6
0 3 10 bands. Legend as in Figure 6.

|Angl MeV)

Figure 8: Absolute values of the N« amplitudes for the lightest few
negative-parity nucleon resonances of each J in the N=3 band. Legend
as in Figure 6.

29 ' 23



D. More massive states
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Figure 10: Absolute values of the N7 amplitudes for the lightest few nucleon
resonances for J* values which first appear in the N=4, 5 and 6 bands.
Legend as in Figure 6.

Figure 10 and Table V illustrates the result of applying this model to N*
model states which have L > 4 and so must first appear when the oscillator basis
1s extended to the N=4 to N=6 bands. The pattern established in the N=3 band
is repeated, and we see that the lightest states in each J¥ sector couple the most
strongly to Nx, with a rapid fall-off in coupling strength as the masses increase.
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There is a remarkable agreement, given the necessarily approximate nature of
the model for such highly excited states, between the predicted couplings for the
lightest N %+, N ,and N %-F states and those extracted from the partial-wave
analyses for resonances with these spins and parities. The model predictions of
the masses of the positive-parity states are only approximately correet {(to within
roughly 100 MeV) given these assignments.

We have included in this comparison the lightest two N=4 band N %+ states
(the sixth and seventh P, states), since there is some weak evidence for a
N %+(2100)P11 state with a mass considerably higher than the model predic-
tions for the missing states in the N=2 band. Our prediction for the coupling
strength of the sixth P;; model state N %+(2065) is considerably larger than
those of the N=2 band missing states, making this a natural assignment for this
candidate resonance. Our results for the lightest N=4 band N %+ states indicate
that there should be a state at roughly 2400 MeV in the Fy7 partial wave which
couples relatively strongly to N7. The model also has a natural explanation (in
contrast to the situation for the A states) for the absence of N* resonances with
JP = 1.,—1+ %‘, and %+, the lightest of which all have quite weak «.upling to

Nm.
Figure 9 and Table I'V also show our results for the lightest few model A states

for J values which first appear in these higher bands. The lightest A%l-+ model
state (the next lowest state is considerably more massive) has approximately the

right mass and coupling to be assigned to the well-established A%+(2420)H3 11,
and the same is true for the lightest A13™ and Alzé+ model states and the two-
star candidate resonances A§_(2750)I3 13 and A-ll,—5+(2950)K3 15. The situation
is less certain for the two-star A§+( 2300) H3o, although once again the lightest

A§+ model state couples the most strongly. The two lightest model A%+ states
couple quite weakly to N7 and so our assignment to the one-star candidate in
this sector is quite arbitrary.

V. CONCLUSIONS AND OUTLOOK

The results described above show in many cases a remarkable agreement with
the data, given the simplicity of the model. Most noticeably absent from our
analysis i3 a treatment of coupled channel effects in the spectroscopy and decay
channel couplings of these states. These can be expected to cause both mass
shifts and mixings between the states. As mentioned above, there are sectors
where states which are close in mass and which have similar couplings to the



N production channel in our simple model are likely to mix in the presence of
many open decay channels. Such mixings could easily make one state more likely
and one less likely to be produced, which would help explain why some states
with appreciable couplings in our model remain unseen. We have seen several
examples where such a mechanism could be operating. On the other hand our
model can be considered reliable for states which are appreciably separated in
mass and coupling strength from other states with the same quantum numbers
and similar energies.

It should be stressed that our results for the N7 couplings of states which
first appear when the bases are extended beyond the N=2 band are predictions
based on the fit to the lower-lying states. The generally good agreement of
these predictions with the couplings extracted from the partial-wave analyses
makes it rather hard to decide, on this basis alone, between a conventional three-
quark or hybrid explanation for these states. However the discrepancy noted by
many authors between the mode! predictions and the mass of the well-established
A27(1930)Das remains. A remarkable pattern emerges for many JF sectors of
a given flavor; the lightest state in a given oscillator band couples most strongly
to Na with the coupling strengths falling off rapidly as the masses of the states
increase. This suggests a mechanism which correlates a lower expectation value
of the spectral Hamiltonian with a stronger coupling to this production channel.

Our fit to the states below the N=3 band confirms the results of the recent
reanalysis of the Py partial-wave of Cutkosky and Wang for the Roper resonance
with a conventional three-quark description of this state. On the basis of the Nx
couplings alone the same conventional explanation suffices for A%+( 1600) P33,
although the mass of this state is considerably too high in quark potential models.
Our model is unable to explain the small width of the well-established resonance
N %+(1720)P13 which appears in the partial-wave analyses; there are suggestions
in the literature [43] that these quantum numbers (along with Py; and Pa3) are
natural for a low-lying hybrid state. Our resulis indicate that this possibility
deserves further study.

We close this article by noting that there is much that may yet be done
in the framework of our model. Decays of strange baryons, as well as decays
of non-strange baryons to strange final states are of interest, especially in the
light of experiments that are proposed for CEBAF. In addition, multi-pion final
states demand some attention, as they provide large branching fractions for many
resonances. In the model we have described, such decays could be treated as
cascade processes. For a two-pion final state, for example, one would assume
that the resonance of interest first decayed to something like Ax or Np, followed
by the strong decay of the A or the p. Such analyses have been carried out [5, 44]
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using the elementary meson emission model. We intend to examine these issues
within the framework of our model.
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APPENDIX A: TRANSITION AMPLITUDE

To begin, we note that momentum conservation yields a factor 6(Kp) in the
amplitude, and we write

< BC|T|A >= 8(Kg)Ma_pc. (A1)
The final form we obtain is

6v ot Tytla+Le—1 Sre & F . a7
Ma_pe = —=(—1)/eT"oTra™ss J5825, L85y L
A—BC 3\/5( ) Jpé.’“ 25aSaLa84 5y Ly

Se Lo sl [Ly So JL\{S L, ssX[L, Sp J
ba Jo Laf 1% 6 Saf & 1 LiJ1UL s S

(—1)Hete—Le=Se T ABCYR(ABC)
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x Y (=) 12 12 S [ Y (-nFe | s Lo
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72 ) 8a £"'a Ja Sbc Ly ch y
X;L {L s 1}{£, o €(8s, Lo, Lye £,4,, L, kg), (A2)

Here we have written
Jo=L,+8,=f,+s, (A3)

with
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Lo=Ly, +L,, =¢f,+L,,,
§,=8,, +1/2, (A4)

and
sa=Jd, +1/2=L, +S,, +1/2, (A5)

with similar definitions for B. The first four 6 — j symbols of Eq. (A2) are nee-
essary for transforming from the usual angular momentum basis for the baryons,
given by Eq. (A4), to the basis of Eq. (A5), which is the more convenient one
for evaluating the transition amplitude. L, L;. and Sp. are internal summation
variables, and F(ABC) is the flavor overlap for the decay.

The purely “spatial” part of the transition amplitude is

1 exp (—FZk2)
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In this expression, N, is a normalization coeflicient that results from writing
a single component of the wave function of 4 as

W LMn,t,nats(P1, P2, P3) = 1](.4A’)3/2 Z < £ mmM —m|LM >

A'Jpz
X N, (A'pp) e e™ 77 L H2(A'p, )Yy, m($2)

A2p2
XNty (Apa)e” 75 L2 (Apa) Yeum (2)- (A7)
For proper exchange symmetry among the quarks, A’ = \%-A, and
| 1 L
: P+ p2 — 2pa). (AB)

77 is a phase factor that arises from calculating the Fourier transform of the
configuration space wave functions, and has the value

n= (__1-)2:1,,+2n;\+£,,+h ) (Ag)

With these definitions, N, = A2 132N, .., , with

2n! .
Nat = |5 ——3+ Al0
CT T (n+e+3) (AL0)
The Lf;H/ * are the associated Laguerre polynomials
1/2 08 _ - m e+ 1) 2"
L) = X_jﬂ(—l) ( AR B (A1)

while the Y}, are the usual spherical harmonics.

J is a Jacobian factor needed to convert from the basis used in evaluating the
space factor € in Ref. [33], to the basis used in the evalnation of the wavefunctions
we are using for explicit calculation of the decay amplitudes. The wave functions
of Ref. [1] use

1 1
Pipz ﬁ(l’l —-p2), PA = %(PI+P2_2P3)’ (A12)

so that both the Jacobian factor mentioned above, as well as a redefinition of the
gaussian parameters of the wave functions, are required in order to use the wave
functions of Ref. [1] with the above expression for the decay amplitude.

The factor R of Eq. (A2) is obtained as the overlap of the wave functions in
the p coordinates in the initial and final baryon. Since we are using a model in
which quarks 1 and 2 are spectators (€,, = £,,, Sp. = Sp,, Jp, = Jp,), and our
basis is fully orthogonalized (& is the same in the initial and final baryons, so
that n,, = n,,), this overlap is always unity. In addition, this means that the
Jacobian discussed above is only necessary for the transformation in pa.

The EM"D Diuv (w1, we, )1, (€s, €, €7, €s; L) term arises from writing (we de-
fine q, = pa,, with a similar definition for the daughter baryon)

Lf:'a, e-f"‘ﬁ/?Lffhe-B’#/?L,*’;ge‘C’q?”
= Y Dauulwr,wa,z)e A T012e B0/ 2e=CRacl2, (A13)
Ap v

When the substitutions q, = zk+q, qz = (r —wi )k +q, g. = (z —w2)k 4+ q are
made, and the integrals over k and q are evaluated, the expression above results.
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We note that it 1s not particularly enlightening to write out explicitly the full
form of the Dy, that we have obtained.
In Egs. (A2) and (A6},

a b ¢ e b ¢
d ¢ f|=¢fghi<d e f (A14)
g h i g h i
a b ¢ X
where { d e [ } isthe 9 — j symbol, and J =+/2J 4+ 1.
g h 1

= (32w1 +CQWQ) (A? + 32 +CZ)_1 3
1 2
=g [ 4 B @ - w) + CP e — )],

G? = %(AZ + B*+C?). (A15)
w; and wy are ratios of various linear combinations of quark masses. In general,
my +my wy = ma (A16)

T omy o ma+my mg+ my’
where the subscripts refer to the quark labels shown in Figure 5. For the decays

that we are considering, wy = % and wy = % In addition,

ot - 4m(2¢ 4+ 1)!
BTV @6+ D- )+ 17
e (=D 0 £ 8
Btltz —_ —\/4_7r £1£2 ( 0 0 0) fl (Al?)

and &) = Ly — ¥y, 8, = L. — £y, £, = 1 —f3, &}, = L, — {4 and the geometric factor
I, is

Iopl€s. 6, €z, £a; L) = (—1)E(2p)5ée 705
"i PAXNFD(pH A 20 85 £\ [2) & &\ [& & L
S @2p+2D+ Dip-NI\0 0 0 0 0 0/ 08 & 2Xx[°

Topy1 (€5, €6, €7, €5 L) = 2(=1)"*1(2p + 1)1s s r4s
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TABLES TABLE II.  Absolute values of the N amphtudes for all A teeanane ewon the N =1,
1, and 2 bands. Notation as in Table [.

TABLE 1. Absolute values of the Nx amplitudes for all N* resonances in the N=1 model state IAIN”l N state rating VDo - (BIR)N"
and N=2 bands. Notation for model states is fD[JP]n(mass[MeV]), where P is the flavor, (MeV2) assignment (MeV2)

JT are the spin and parity, and n is the principal quantum number. States from the
partial-wave [31] analyses are listed (along with their overall rating) in the same row as
our model state assignment. ‘Missing’ states are those with no experimental analogues. [A27];(1620) 52405 A7 (1700) S TTY 6.542.0
Data sources and theoretical errors are discussed in the text.

[A17]1(1555) 46+ 0.9 AL7{1620) Ak 6.5+1.0

model state |ANa| Nz state rating Vot - (BR)nx [A%+]l(1835) 31505

(MeV%) assignment (MeV%) [a57T2(1875) 9.9304 aLt(to10) He 6.6+1.6
[N17],(1460) 14.4 407 N1™(1535) *rie 8.042.8 [A27](1230) 10.2 4 0.1 A2*(1232) bl 10.740.3
[N17T2(1535) 107411 N17(1650) a4 8.741.9 (85 ¥12(1795) 6.341% a3*(1600) * 7.6+2.3
[N2711(1495) 10.0 +£0.3 N$7(1520) rrx 8.340.9 [A2%]5(1915) 46105 Aa3*(1920) A 7.742.3
[N27],(1625) 6.0+ 0.4 N27(1700) e 3.241.3 [A3*)a(1985) 3.7%1¢
(V27 )i(1630) 57401 N2 (1675) saxs 77407 (257 )i(1910) 4.3%03 A5 (1905) Hare 5.5:+2.7
[N1*](1540) 22.2%08 N1*(1440) BN 19.743.2 [A2*];(1990) 134532 Azt (2000) + 5.3%2.3
[V 1*](1770) 34403 N1*(1m10) - 47412 [A2*]:(1940) 8.5+ 0.1 AZ*(1950) Hanx 9.8+2.7
[N1*],(1880) 3.0%11
[¥5" 1 (1975) 1620%
[N$*]i(1795) 17193 N2*(1720) rrs 5.541.6
(Nt L(1870) 5.6119
(N1*1s(1910) 0.2+0.4
[N3*],(1950) 4.21}2
[N37)s(2030) 1.919%
[N3*1i(1770) 93402 Ni*(1680) tanx 8.740.9
[¥3+1:(1980) 1.3 4 0.2 N2*(2000) ** 2.041.2
[N$7¥]3(1995) 1.0+0.1
[N1*1:(2000) 3.0+0.3 N1%(1990) ** 4.6+1.9
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TABLE IV. Absolute values of the Nr amplitudes for the lightest few negative-
parity A resonances of each J in the N=3 band, and for the lightest few A resonances
for J¥ values which first appear in the N=4, 5 and 6 bands. Notation as in Table I.

TABLE 111.  Absolute values of the Nx amplitudes for the lightest few negative-
parity nucleon resonances of each J in the N=3 band. Notation as in Table I.

model state |A;lv,r| Nrx state rating VTt - (BIR)NTr
(MeVZ) assignment (MeV3) model state |A1]v,r|g N= state rating Vo - (BIR)N,r

[N 17]{1945) 7.240.9 N 17(2090) * 79438 (MeV2) assignment (MeV2)

- AL ]2(2035 2. . ALT(1900 b 1422
(N2 ]u(2030) 49405 [A 57 ]2(2035) 1+0.1 3 (1900} 4.142
[N17)s(2070) 38404 [a17]:(2140) 4.4%971 A7 (2150) + 4.0£1.5

_ 3= ¢ 0.7 a-
(V1 le(2145) 0.3 4 0.1 [A37]2(2080) 11454 AL (1940) * 3.241.4
[N17]5(2195) 0.140.1 (A3 ]s(2145) 1345
[N 3 1a(1960) 7.0%18 N27(2080) o 5.042.5 [AZ7]i(2155) 29+04 AZT(1930) e 5.0£2.3
[N27]a(2055) 4314 [8571e(2165) 6%
[N 27)s(2095) 0.1+02 [A27])a(2265) 2.341° A27(2350) * 77453
[V 37]6(2165) 1.8193 (437 )i(2325) 0.6£0.1
(V3] (2180) 18493 (A7} (2230) 231 al o 52419
(N3 (2080 70108 N7 (2200)N ** 4.542.3 [AL ]5(2295) 23102

5=y . - 415
[N3 1s(2095) 5171, (A2 ] (2295) 5.1%07 A2 (2400) ** 4.142.1
[N27)(2180) 21432 [AI*] +13

: 2711 (2370) 0.5%13

£ 35 Btos
[Nz J+(2235) 1800 [A1*],(2460) 1.3103 ALY (2390) * 4.9+2.0
NETle(2260 0.8 +£0.2
V2 Ja(2260) [A%7¥])(2420) 24104 A% (2300) b 5.142.2
[~ 37 )(2295) 01401 (A3 *]2(2505) 0540 '

- 5 I2 . .1
[N27]s(2305) 0.2+40.2

. s . (ALY (2450) 1.4%93 ALY (2420) arer 6.742.8
[VI7]i(2090) 8.0}13 N17(2190) L 7.043.0
(VI ha2os) s 2 @5 hesso) 137

7 (2 207

_ [A12%];(2955) 02401
N1 1a(2255) 1.1 £0.1 z 4
[N 27 ]a(2305) 05401 [A% "h{2750) 3255 AZT(Ts0) " 3IELS
(N17]s(2355) 1301 fai2*](2920) 24102 A1 (2950) *s 36115
(N2} (2215) 30402 N2 (2250) Ky 59419 [4 127 ]2(3085) 0.6+0.1

IR
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TABLE V.

Absolute values of the N# amplitudes for the lightest few nucleon res-
onances for J¥ values which first appear in the N=4, 5 and 6 bands. Notation as in

Table .
model state |Anx| Nr state rating Vot - (BR)wr

(MeV% ) assignment (MeV% )

[N17]s(2085) 9.123 Nit(2100) * 5.042.0

[N 177 (2210) 0.313]

[N 37 12(2390) 5.9%11

[N I*]a(2410) 0.4%52

[N I7)4(2455) 0.7 £0.1

[N2%]1(2345) 73+0.9 N* (2220 e 8.5+2.0

[N £¥12(2500) 0.5+ 0.1

[N 2¥]s(2490) 0.8 +0.1

[N L], (2490) 1.8153

[NiL*]);,(2600) 0.8+ 0.1

[N 17} (2600) 52108 N7 (2600) *xE 4.5+1.5

[N 4 )(2670) 2.6%03

[Vil7)s(2700) 05401

[N ™) (2770) 0.240.1

[Vi17)5(2855) 0.7+ 0.1

[N127],(2820) 43119 N 1% (2700) w 3.741.2

[N 127%]2(2930) 0.440.1

[N127¥]3(2955) 0.3+0.1

[N371h(2715) 1.6+0.2

[N127]2(2845) 0.440.1

[V12%], (2940) L.1£0.1

[N 12¥],(3005) 0.5+£0.1
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